

Crescer Professional Board

32

Manual de Utilização

SUMÁRIO

1. INFORMAÇÕES GERAIS	3
2. SOBRE A CPB	3
3. HARDWARE	4
3.1 PINAGEM	5
3.2 MAPA DE PINOS MICROCONTROLADOR	6
3.3 APLICAÇÕES	7
4. SOFTWARE	8
5. ESPECIFICAÇÕES DAS FUNCIONALIDADES	9
5.1 FONTE DE ALIMENTAÇÃO	9
5.1.1 Hardware	9
5.2 COMUNICAÇÃO GSM	10
5.2.1 Hardware	10
5.3 BARRAMENTO	11
5.3.1 Hardware	11
5.4 SAÍDAS A RELÉS	13
5.4.1 Hardware	13
5.5 COMUNICAÇÃO RS232 ou RS485	15
5.5.1 Hardware	15
5.5.2 Software	17
5.6 OPTOACOPLADORES	18
5.6.1 Hardware	18
5.6.2 Software	21
6. CONFIGURAÇÕES INFINITY	22
7 CONCLUSÃO	24

3

1. INFORMAÇÕES GERAIS

Este manual fornece informações necessárias para a correta utilização de todas

as funções da Crescer Professional Board 32. O texto demostra ao usuário, de forma

objetiva, instruções exemplificadas para colocar em operações todas as

funcionalidades da placa.

2. SOBRE A CPB

A CPB é uma solução em Hardware robusta e qualificada que viabiliza o

emprego do Arduino, de maneira profissional, em qualquer produto ou equipamento

independente da área de atuação.

Ideal para o desenvolvimento de soluções, seu objetivo é diminuir o tempo e

dinheiro investido para viabilizar seu negócio ou produto, assumindo o viés técnico, a

CPB permite direcionar os recursos dos usuários para o setor comercial alavancando

suas vendas.

Por usar o conceito do arduino, a CPB tem integrações com inúmeras shields,

sensores e atuadores de melhor custo-benefício, além de permitir que os usuários

tenham uma base para a multiconectividade, podendo ser conectada a Nuvem com o

seu módulo onboard de Comunicação GPRS/TCP IP ou mesmo com shields de

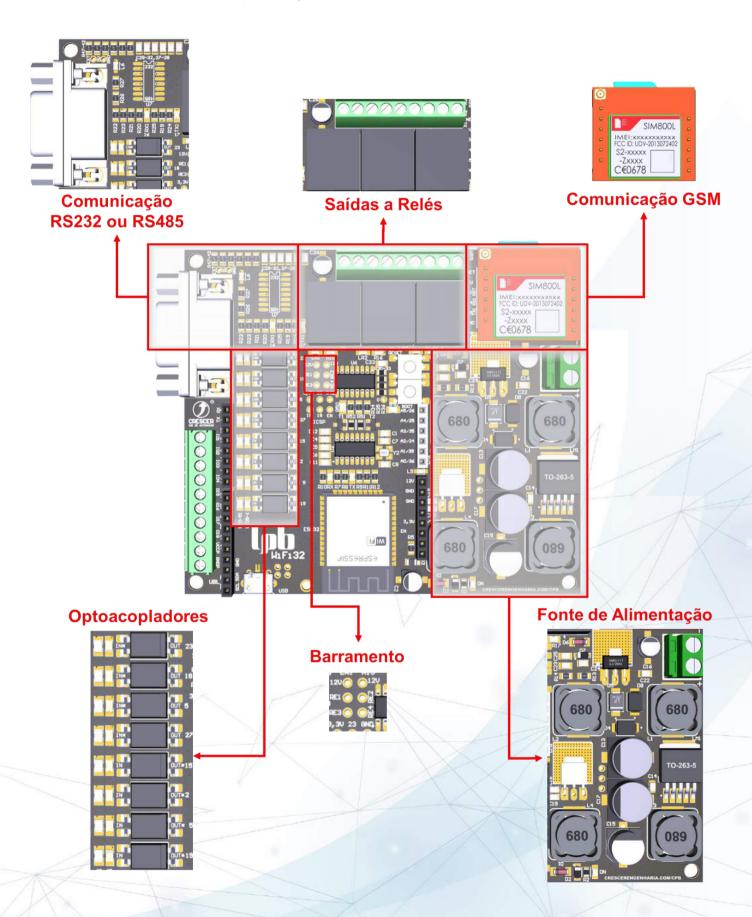
conexão, Ethernet Cabeada e LoRa. Ainda com sua conectividade WiFi e Bluetooth

onboard.

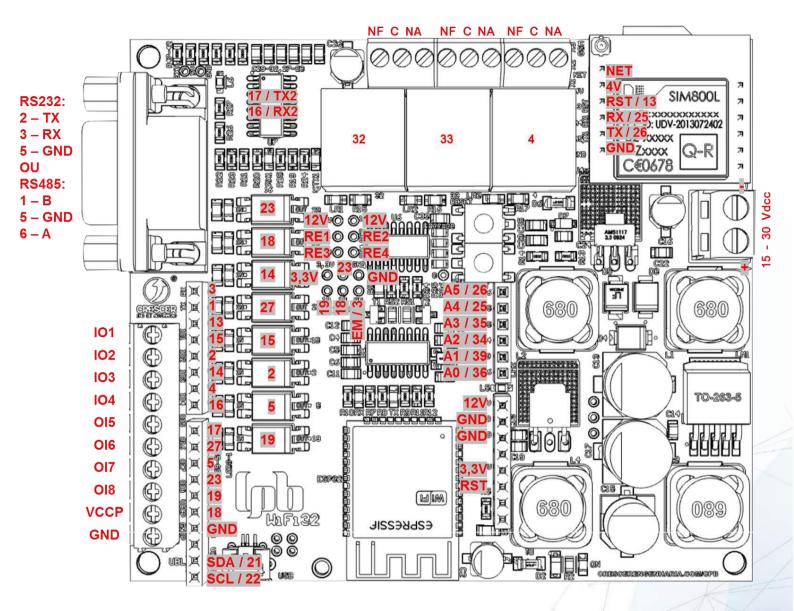
Vídeo de Lançamento: https://www.youtube.com/watch?v=KqLikDG5SNE

A CPB 32 utiliza o Microcontrolador ESP32 e Interface de Desenvolvimento (IDE)

do Arduino para programação.

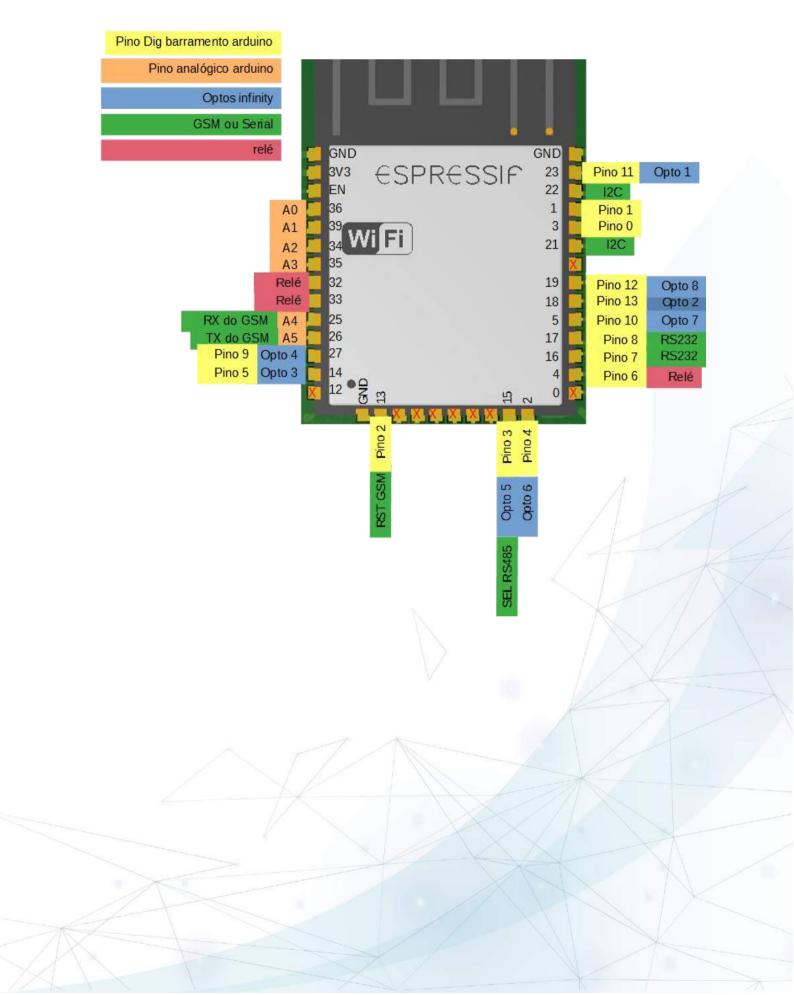

Datasheet ESP32:

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-


32 datasheet en.pdf

3. HARDWARE

Este capítulo aborda uma mostra inicial do Hardware, separando-o em partes para uma posterior especificação.



3.1 PINAGEM

Pino	Legenda	Grupo	
IO1-IO4	Entrada NPN	Optoacopladores	
OI5-OI8	Saída Coletor Aberto		
1-5, 13-19, 23 e 27	Pinos digitais	// X //	
21/SDA e 22/SCL	Barramento I2C		
18, 19 E 23	Barramento SPI	Microcontrolador	
A0-A5 (25, 26, 34, 35, 36, 39)	Pinos Analógicos		
RST	Reset do Microcontrolador		
NF	Normalmente Fechado		
NA	Normalmente Aberto	Doléa	
С	Comum	Relés	
RL1, RL2, RL3	Relés		
12V, RE1 - RE4	Saídas Digitais para Relés Externos	ais para Relés Externos	
+, -	Alimentação	Externos	
NET, 4V, RST, RX, TX E GND	Pinagem SIM800	Comunicação GPRS/TCP IF	
1, 2, 3, 5, 6	Pinagem DB9	Comunicação Serial	

3.2 MAPA DE PINOS MICROCONTROLADOR

3.3 APLICAÇÕES

Produtos e negócios em que a CPB está empregada:

Cama de Quiropraxia;

Varredora de Escada Rolante;

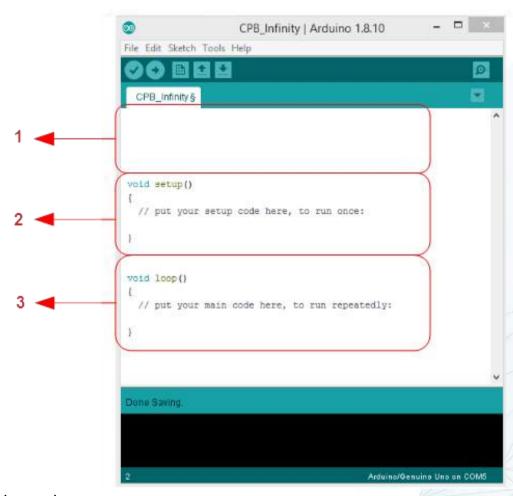
Bobinadora de Filamento para impressão 3D;

Envasadora de Cianoacrilato;

Equipamentos de Eletromobilidade;

Equipamentos Calçadistas;

Equipamentos Agrônomos: estações meteorológicas e monitoramento de silos de grãos;


Equipamentos para aquisição de variáveis in loco para Softwares de TI.

4. SOFTWARE

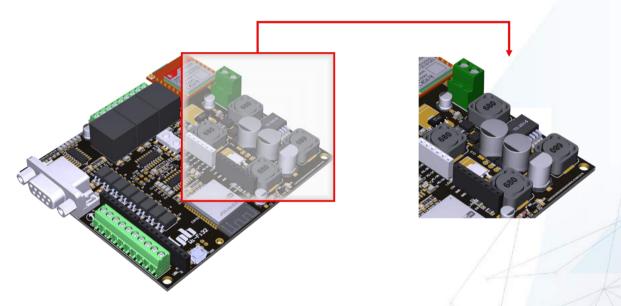
Este capítulo aborda uma mostra inicial da interface de desenvolvimento do Software para a CPB, do qual é exigido um conhecimento básico de programação do ESP32.

Link de Indicação do curso: https://www.udemy.com/course/automacao-profissional-com-arduino-completo/?referralCode=E663758FD3F7FD7A418F

Link para recebimento do primeiro Módulo do Curso Gratuito: https://www.crescerengenharia.com/cursogratis

Legenda:

- 1. Região das variáveis e bibliotecas.
- 2. Setup.
- 3. Loop.


5. ESPECIFICAÇÕES DAS FUNCIONALIDADES

Os próximos capítulos especificaram as características de Hardware e Software de todas as funcionalidades anteriormente listadas.

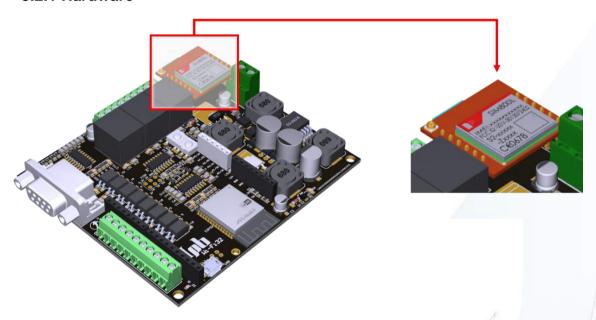
5.1 FONTE DE ALIMENTAÇÃO

A CPB Mega conta com uma fonte de alimentação robusta e testada para ser empregada em qualquer ambiente, inclusive setores Industriais.

5.1.1 Hardware

Borne para alimentação.

Tensão de Entrada: 15-30V.


Consumo: 380mW em 24V.

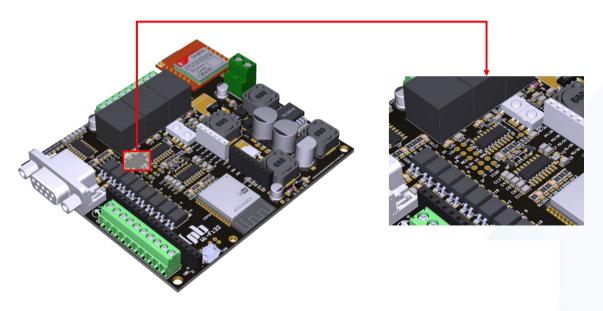
Polaridade vide na placa.

5.2 COMUNICAÇÃO GSM

Um dos grandes diferenciais da CPB é a Comunicação GSM (GPRS e TCP/IP), da qual utiliza Chips de celular para enviar e receber SMS/ligações ou conectar-se na Web, com isso, permite a coleta e acionamento de dados e atuadores in loco para sistemas de TI, Telecom, Automação.

5.2.1 Hardware

Shield GSM SIM800L, GSM SIM800C.


Tensão de alimentação 4V - onboard.

Shield Plug and Play, basta programar CPB para a comunicação GSM de acordo com o exemplo a seguir.

5.3 BARRAMENTO

A Crescer Professional Board 32 possui uma área de prototipagem com pinos auxiliares que facilitam no interfaceamento com shields, atuadores externos e adesão de pequenos circuitos eletrônicos adicionais.

5.3.1 Hardware

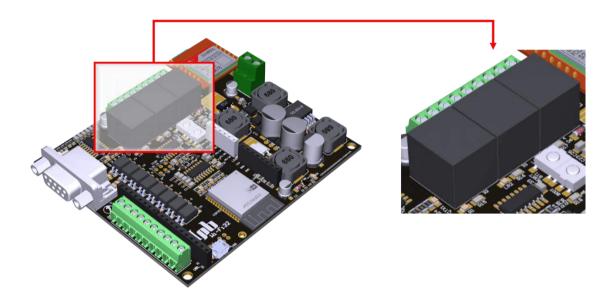
A área possui:

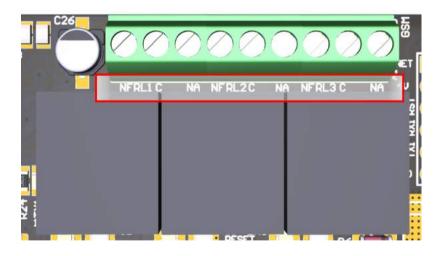
- 1 4 Saídas digitais isoladas de 12V para acionamento de relés externos
- 2 Barramento SPI.

Configuração em Hardware do Barramento:

Para configurar o barramento e usá-lo em sua aplicação siga as instruções de manuseio abaixo:

Exemplo: Para usar o pino do Relé Externo 1 (RE1) solde o jumper "Ao =RE1" na parte inferior da placa, sendo assim, o pino analógico A0 acionará o Relé Externo 1.


Grupo:	Função:	Configurar para:	Ação: — Solda
	Analógica A0	Relé Externo 1	A0 = RE1
Saídas para	Analógica A1	Relé Externo 2	A1 = RE2
Relés Externos	Analógica A2	Relé Externo 3	A2 = RE3
	Analógica A3	Relé Externo 4	A3 = RE4

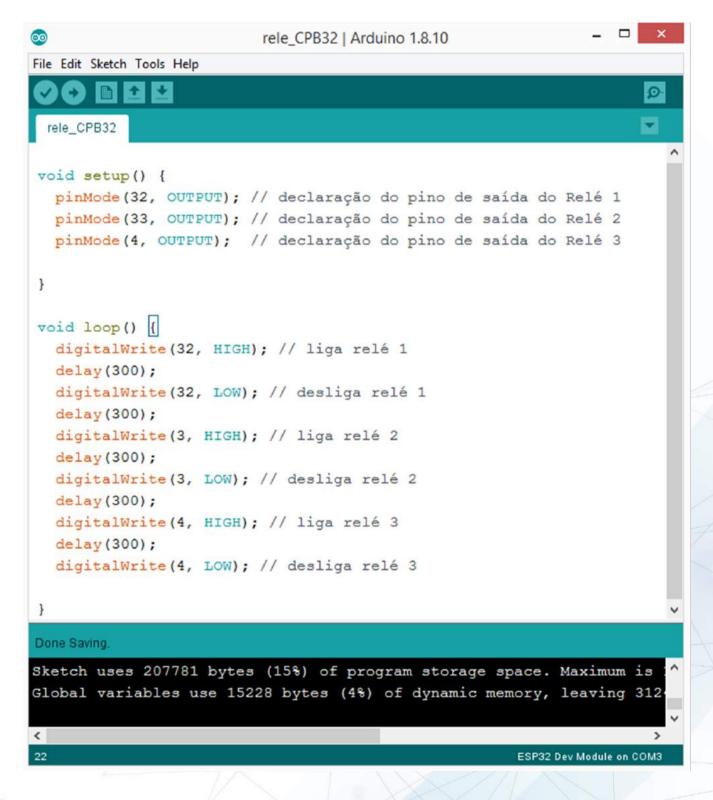

5.4 SAÍDAS A RELÉS

A CPB 32 conta com 3 saídas a relés para acionamento de periféricos, tais como: motores, motobombas, lâmpadas, refletores, ventiladores etc.

5.4.1 Hardware

Pinagem dos Relés onboard.

Corrente e Tensão dos contatos:

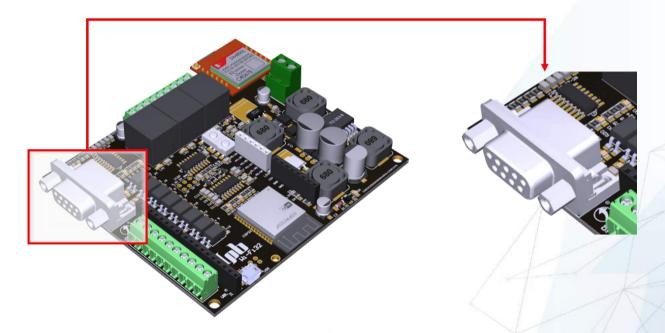

10A - 24VDC

10A - 125VAC

10A - 220VAC

5.4.2 Software

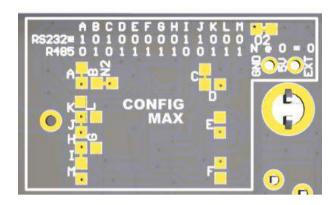
Exemplo de Software para acionamento dos Relés da CPB 32.


Exemplo "rele_CPB32", download disponível em: https://github.com/casaautomacao/CPB32

5.5 COMUNICAÇÃO RS232 OU RS485

A CPB conta com uma saída para comunicação RS232 ou RS485, especializada para fazer a interface entre placa e IHM (Interface Homem-Máquina), CLP (Controlador Lógico Programável), Inversores de Frequência e outros devices com este protocolo.

Vídeo de demonstração de funcionalidades da CPB com uma IHM Kinco, Inversor e Motor WEG: https://www.youtube.com/watch?v=v4HOcDI71sM&t=4s

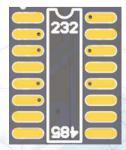

Pinagem de Conexão Serial:

Pino DB9	RS232*	RS485
1	-	В
2	TX	-
3	RX	- 1
4	-	-4
5	GND	GND
6	17	Α
7	1	\sim
8	-\)	\times - \times
9	- 7	

Sendo RS232 o padrão do Hardware.

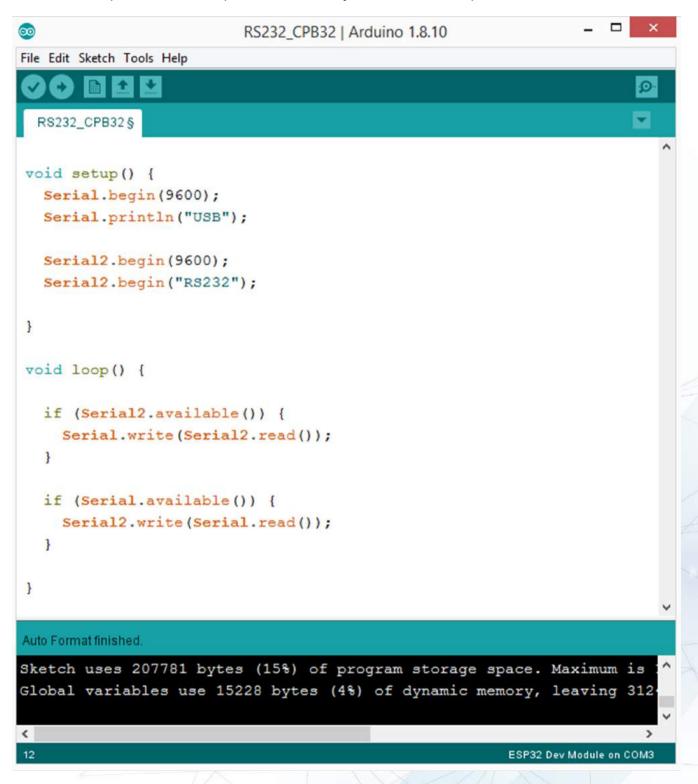
Configuração em Hardware da Comunicação Serial:

A tabela abaixo, mostra a matriz de configuração para definir se o protocolo de Comunicação Serial será RS232 ou RS485. Sendo RS232 default.



Onde 0 significa corte ou não solda e 1 significa solda nos jumpers A, B, C, D, E, F, G, H, I, J, K, L e M.

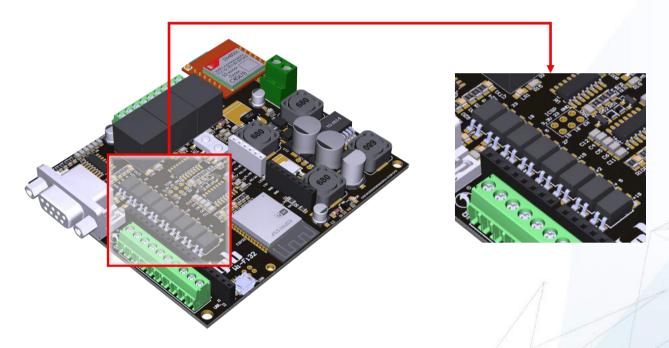
Os jumpers L e N são para alimentar externamente o Circuito para o MAX485, CI que fará a comunicação com protocolo RS485.


Comunicação Serial:	Função:	Configurar para:	Ação: — Corte — Solda
CONFIG MAX	RS232	RS485	A B C D E F 6 H I J K L M RS232=1010000011000002 R485010111111001111 N = 0 = 0 A 202 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Cada protocolo de comunicação tem um CI específico, solde ele seguindo as instruções serigrafadas na placa:

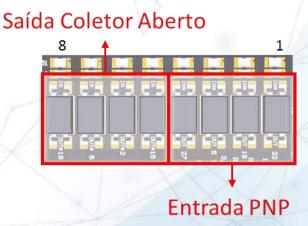
5.5.2 Software

Exemplo de Software para a comunicação RS232 com a porta Serial da CPB 32.


Exemplo "RS232_CPB32", download disponível em:

https://github.com/casaautomacao/CPB32

5.6 OPTOACOPLADORES


A CPB 32 conta com 8 optoacopladores que podem ser configurados em hardware com Entradas NPN ou PNP ou saída Coletor Aberto, ideal para o acionamento ou leitura de periféricos que necessitem isolamento em relação ao Microcontrolador e/ou de fonte. Tendo assim, robustez nas leituras e acionamentos destas entradas e saídas.

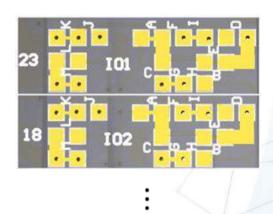
5.6.1 Hardware

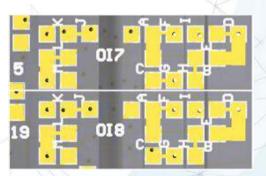

Default de Hardware são:

- 4 Entradas NPN
- 4 Saídas Coletor Aberto

Configuração em Hardware dos Optoacopladores:

A tabela abaixo, mostra a matriz de configuração para definir se os optoacopladores serão entradas PNP, NPN ou uma saída de Coletor Aberto.

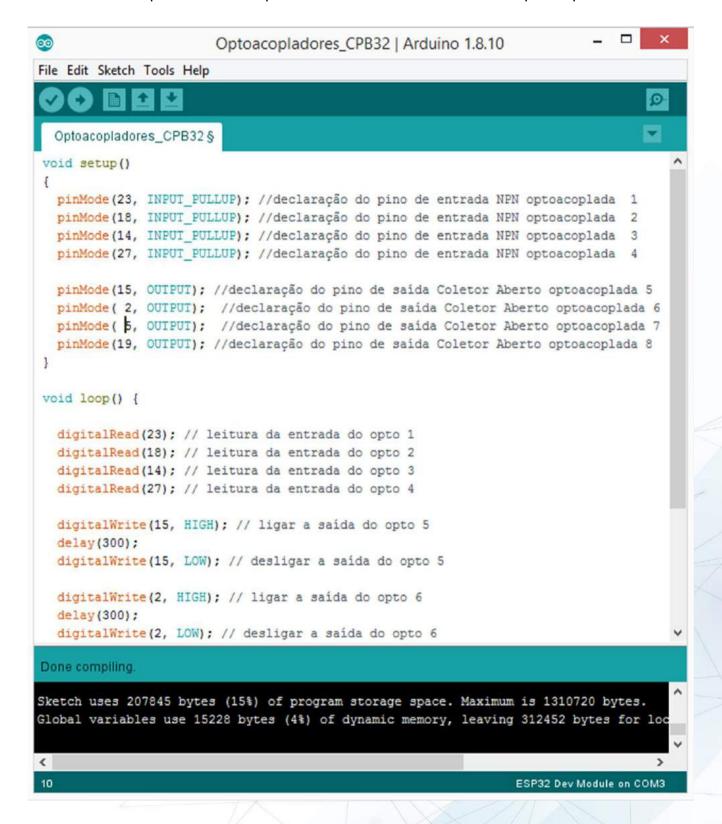



Onde 0 significa corte ou não solda e 1 significa solda nos jumpers A, B, C, D, E, F, G, H, I, J, K, L e M da matriz abaixo.

Default:

IO1-IO4 – Entrada NPN.

OI5-OI8 - Saída Coletor Aberto.

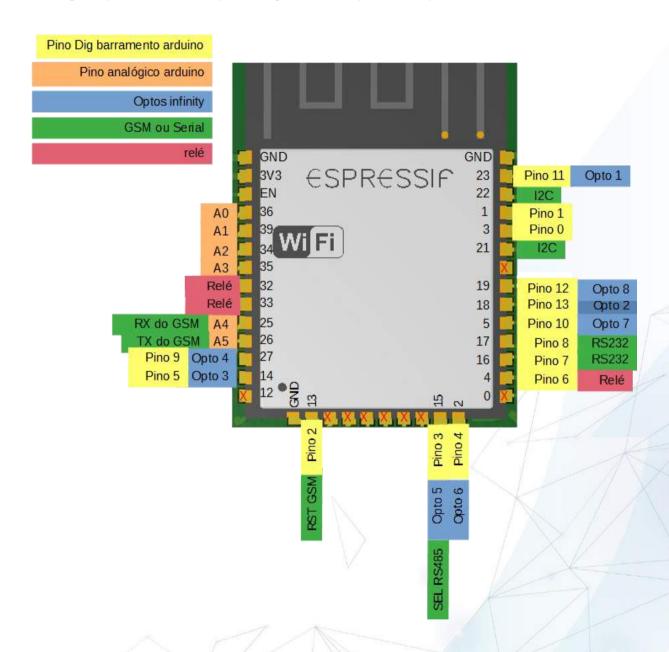


Para configurar os 8 optoacopladores da CPB siga as instruções da tabela abaixo:

Optoacopladores:	Função:	Configurar para:	Ação: — Corte — Solda
IO1, IO2, IO3 e IO4 Entrada NPN	Entrada NDN	Entrada PNP	23 IO1 C
		SaídaColetor Aberto	18 102 C B
015 016 017 0 019	e Ol8 Saída Coletor Aberto	Entrada NPN	017 C P T
O15, O16, O17 e O18		Entrada PNP	19 OI8 C

5.6.2 Software

Exemplo de Software para o acionamento ou leitura dos Optoacopladores.



Exemplo "Optoacopladores_CPB32", download disponível em: https://github.com/casaautomacao/CPB32

6. CONFIGURAÇÕES INFINITY

A CPB 32 também tem conceito Infinity, contando com algumas opções de programação em Hardware, visando atender uma variedade maior de aplicações.

Para atender uma grande variedade de opções de hardware, se fez necessário ter alguns pinos com múltiplas funções. Exemplo do Mapa de Pinos abaixo:

Se houver algum conflito entre o pino que você usará com sua segunda ou terceira função, baste cortar o jumper de seleção conforme tabela abaixo:

Grupo:	Função:	Remover:	Ação: — Corte		
	Analógica A4: Barra de Pino e RX GSM	Barra de Pino	Cortar Jumper A		
	Analógica A4: Barra de Pino e RX GSM	RX GSM	Cortar Jumper B		
	Analógica A5:	Barra de Pino	Cortar Jumper C		
	Barra de Pino e TX GSM Analógica A5:	TX GSM	Cortar Jumper D		
	Barra de Pino e TX GSM Pino 23:	Barra de Pino	<u>'</u>		
	Barra de Pino e Opto 1 Pino 23:		Cortar Jumper E		
	Barra de Pino e Opto 1 Pino 19:	Opto 1	Cortar Jumper F		
	Barra de Pino e Opto 8	Barra de Pino	Cortar Jumper G		
Jumpers na parte	Pino 19: Barra de Pino e Opto 8	Opto 8	Cortar Jumper H		
Inferior (bottom) da Placa	Pino 18: Barra de Pino e Opto 2	Barra de Pino	Cortar Jumper I		
	Pino 18: Barra de Pino e Opto 2	Opto 2	Cortar Jumper J		
	Pino 5:	Barra de Pino	Cortar Jumper K		
	Barra de Pino e Opto 7 Pino 5:	Opto 7	Cortar Jumper L		
	Barra de Pino e Opto 7 Pino 4:	Barra de Pino	Cortar Jumper M		
	Barra de Pino e Relé 3 Pino 4:				
	Barra de Pino e Relé 3	Relé 3	Cortar Jumper N		
	Pino 17: Barra de Pino e TX RS232	Barra de Pino	Cortar Jumper O		
	Pino 17: Barra de Pino e TX RS232	TX RS232	Cortar Jumper P		
	Pino 16: Barra de Pino e RX RS232	Barra de Pino	Cortar Jumper R		
	Pino 16: Barra de Pino e RX RS232	RX RS232	Cortar Jumper S		
	Pino 2:	Barra de Pino	Cortar Jumper A1		
	Barra de Pino e Opto 6 Pino 2:	Opto 6	Cortar Jumper B1		
	Barra de Pino e Opto 6 Pino 15:				
	Barra de Pino, Opto 5 e Pino RS485	Barra de Pino	Cortar Jumper F1		
	Pino 15: Barra de Pino, Opto 5 e	Opto 5	Cortar Jumper G1		
Jumpers na parte	Pino RS485 Pino 15:	. //			
Inferior (bottom) da Placa	Barra de Pino, Opto 5 e	Pino RS485	Cortar Jumper H1		
	Pino RS485 Pino 13:	Barra de Pino	Cortar Jumper I1		
	Barra de Pino e Reset GSM Pino 13:	Reset GSM	Cortar Jumper J1		
	Barra de Pino e Reset GSM Pino 14:				
	Barra de Pino e Opto 3 Pino 14:	Barra de Pino	Cortar Jumper M1		
	Barra de Pino e Opto 3	Opto 3	Cortar Jumper N1		
	Pino 27: Barra de Pino e Opto 4	Barra de Pino	Cortar Jumper Z1		
	Pino 27: Barra de Pino e Opto 4	Opto 4	Cortar Jumper Y1		

7. CONCLUSÃO

Nos conheça e que juntos, possamos desenvolver produtos tecnológicos, inovadores, desafiadores e rentáveis.

Indicações de materiais adicionais:

- 1 Versão CPB Infinity e CPB 32: Quero conhecer!
- 2 Blog Crescer com conteúdo de Arduino Profissional, ESP32, Internet Of Things, Eletrotécnica e Engenharia: <u>Quero saber mais!</u>
- 3 Grupo no WhatsApp "Profissionais com Arduino": Quero participar!
- 4 Módulo I gratuito do curso "Automação Profissional com Arduino": Quero aprender!
- 5 Drive do banco de códigos para serem utilizados nas CPB's: Quero utilizar!

ANEXO I - DETALHES TÉCNICOS CPB'S

(pb			
INFORMAÇÕES	CPBINFINITY	CPBWI FI 32	CPB MEGA
Relés 10A NA e NF	3		7
Optoacopladores de Entrada (NPN OU PNP) *1	4		9
Optoacopladores de Saídas (Coletor Aberto) *1	4		9
IO Digitais na Barra de Pinos *2	***	14	
Saída PWM	6	12	12
Entradas Analógicas	8	12	16
Saídas Analógicas	0	2	0
Resolução Analógica	10 Bits	12 Bits	10 Bits
Integração com Shields Arduino	170.70 D.C.70	SIM	2000 - 7.10 - 5.
Comunicação I2C		SIM	
Comunicação SPI		SIM	w.C.
Comunicação Serial UART	1.	3	4
Comunicação RS232 ou RS485		SIM	
BLUETOOTH	Com SIM800C ou Esp32		Com SIM800C ou Esp32
BLE	Com Esp32	On Board	Com Esp32
WiFi	Com ESP12 ou Esp32	200000000000000000000000000000000000000	Com ESP12 ou Esp32
GPRS	544	8 88	60
GSM		Com Shield SIM800C ou SIM8	300L
Espaço para Prototipagem com 25 IOs disponíveis	NÄ	0	SIM
Alimentação 15-30 VCC	770 mW	380 mW	1300 mW
.: Os Optoacopladores podem ser configurados tanto ?: Grande parte das IOs são multifuncionais, estando 3: Shields como:	acima o máximo disponível e a	composição entre elas deper	N
Internet cabeada:	USB Host:	Sd Card:	IHM Nextion: